Course curriculum

  • 1

    Introduction to Data Science Certification Program

  • 2

    Module 1: PowerQuery for Data Cleaning and Integration

    • A First Look at Module 1: PowerQuery

    • Download Module's Learning Materials

    • powerQuery Fundamentals

    • Connect to Data Source

      FREE PREVIEW
    • Handle Missing Data Clean and Normalize - PART 1

    • Handle Missing Data Clean and Normalize - PART 2

    • Handle Missing Data Clean and Normalize - PART 3

    • Identifying Anomalies Removing Outliers

    • Merge Queries

    • Your Learning Journey: Module 1 Recap

    • Module 1: Challenge Activity

  • 3

    Module 2: Python Basics for Data Analysis

    • A First Look at Module2: Python basics

    • Download Module's Learning Materials

    • Install Python

    • Install IDE

    • Visual Studio Code Essentails

    • Python Syntax

    • Variables - PART 1

    • Variables - PART 2

    • Operators in Python

    • Create Custom Functions

    • Python Object: Lists

    • Python Object: Dictionaries

    • Python Object: Tuples

    • Numpy Array

    • Read Data From File

    • Analyze Data: Filtering

    • Analyze Data: Descriptive Analysis

    • Analyze Data: Add New Features

    • Save to Excel File

    • Your Learning Journey: Module 2 Recap

    • Module 2: Challenge Activity

  • 4

    Module 3: SQL for Data Management

    • A First Look at Module 3: SQL

    • Download Module's Learning Materials

    • Install MySQL Server and Workbench

    • Import Database to SQL

    • SQL Basics Select Data

    • SQL Basics Filter and Sort

    • Aggregations in SQL

    • Understanding Type of Data Joins

    • Create INNER JOIN

    • Create LEFT JOIN

    • Create RIGHT JOIN

    • Create FULL OUTER JOIN

    • Create CROSS JOIN

    • Aggregation with Condition

    • Write Subquery Statement

    • Advanced SQL Analysis

    • Merge and Export

    • Indexing for Performance Optimization

    • Your Learning Journey: Module 3 Recap

    • SQL Revision Quiz

  • 5

    Module 4: Statistics and Mathematics for Data Science

    • A First Look at Module 4: Statistics & Math

    • Download Module's Learning Materials

    • Create Vectors

    • Create Matrices and Perform Operations

    • PCA for Dimensionality Reduction

    • Probability Theory: Random Variables

    • Probability Theory: Distribution

    • Probability Theory: Bionomial Distribution

    • Probability Theory: Normal Distribution

    • Probability Theory: Bayes Theorom

    • Basic Calculus: Derivatives & Gradient Descent

    • Descriptive Statistics: Measures of Central Tendency

    • Descriptive Statistics: Measures of Dispersion

    • Descriptive Statistics Plots

    • Inferential Statistics: Data Sampling

    • Inferential Statistics: Confidence Interval

    • Inferential Statistics: Hypothesis Testing

    • Statistical Modeling: Linear Regression

    • Statistical Modeling: Classification Models

    • Statistical Modeling: Time Series Analysis

    • Your Learning Journey: Module 4 Recap

    • Module 4: Challenge Activity

  • 6

    Module 5: Advanced Python for Data Analysis

    • First Look at Module 5: Advanced Python

    • Download Module's Learning Materials

    • Advanced Python: LAMBDA

    • Advanced Python: Decorators

    • Advanced Python: OOP

    • Debugging Techniques: Print Assert

    • Debugging Techniques: pdb

    • Pandas Operation Pivot and Melt Data

    • Working with Time Series Data

    • Your Learning Journey: Module 5 Recap

    • Module 5: Challenge Activity

  • 7

    Module 6: Power BI for Data Visualization

    • First Look at Module 6: Power BI

    • Download Module's Learning Materials

    • Power BI: Download Install and Navigation

    • Connect To Data Source (ETL)

    • Transform Data (ETL)

    • Data Visualization Techniques

    • Create First Visual

    • Understanding Measures and DAX

    • Create Card Visuals with Measures

    • Line Chart with Forecast and Confidence Interval

    • Bar Graph with Top 5 Filter

    • Create Table and Column with DAX for a Visual

    • Create Matrix with Conditional Formatting

    • Dynamic Filtering with Slicers

    • Format Visualization

    • Dashboard Design and Storylining

    • Publish Power BI Dashboard

    • Python Script in Power BI Visualization

    • Your Learning Journey: Module 6 Recap

    • Module 6: Challenge Activity

  • 8

    Module 7: Machine Learning Basics

    • A First Look at Module 7: Machine Learning

    • Download Module's Learning Materials

    • Overview on Machine Learning

    • Supervised Learning: Linear Regression

    • Supervised Learning: Logistic Regression

    • Supervised Learning: DecisionTree

    • Supervised Learning: Random Forest

    • Unsupervised Learning: KMeans

    • Unsupervised Learning: Principal Component Analysis (PCA)

    • Your Learning Journey: Module 7 Recap

    • Module 7: Challenge Activity

  • 9

    Capstone Project: Applying Data Science in real-world scenario

    • Capstone Project: Supply Chain E-Commerce Company